THE ISOMORPHISM THEOREM FOR RELATIVELY FINITELY DETERMINED Zⁿ-ACTIONS

BY

JANET WHALEN KAMMEYER[†]

Department of Mathematics, United States Naval Academy, Annapolis, MD 21402-5002, USA

ABSTRACT

Any two ergodic \mathbb{Z}^n -actions which are finitely determined relative to a common factor are isomorphic if and only if they have the same entropy.

The Isomorphism Theorem for finitely determined Z-actions is a well known result first proven by D. Ornstein [7]. In [1], R. Burton and A. Rothstein prove this same theorem by applying Baire Category techniques to spaces of joinings of finitely determined processes. The Isomorphism Theorem for relatively finitely determined Z-actions was set forth by J. P. Thouvenot [9].

A proof of the Isomorphism Theorem for relatively finitely determined \mathbb{Z}^n -actions is presented, utilizing the techniques developed by Burton and Rothstein.

Let (X, \mathcal{A}, μ) be a Lebesgue probability space. Let e_1, \ldots, e_n denote the n fundamental basis vectors of \mathbb{Z}^n . Let $\{T_{e_1}, \ldots, T_{e_n}\}$ be n commuting measure preserving transformations on X. Let $\mathcal{F} = \{T_{\mathbf{v}}\}_{\mathbf{v} \in \mathbb{Z}^n}$ be the group of transformations generated by $\{T_{e_1}, \ldots, T_{e_n}\}$, $T_{\mathbf{v}}(x) = T_{e_1}^{v_1} \circ \cdots \circ T_{e_n}^{v_n}(x)$, $\mathbf{v} = (v_1, \ldots, v_n)$.

The system (X, \mathcal{A}, μ) , \mathcal{F} is ergodic if the only functions f which satisfy $f(x) = f(T_{\mathbf{v}}x)$ for all $\mathbf{v} \in \mathbf{Z}^n$ are constant functions.

Let $R(m) \subset \mathbb{Z}^n$ be the cube of size $(2m+1)^n$ centered at the origin. Let P be a finite partition of X. Let $\mathscr{P}_m = \bigvee_{v \in R(m)} T_{-v}(P)$. Define the entropy of the

[†] This work supported in part by N.S.F. Grant DMS-85-04701. Received August 7, 1988 and in revised form September 1, 1989

process (\mathcal{F}, P) by $h(\mathcal{F}, P) = \lim_{m \to \infty} h(\mathcal{P}_m)(2m+1)^{-n}$ where $h(\mathcal{P}_m)$ is the usual entropy of a finite partition. J. P. Conze presents a complete discussion of the notion of entropy for \mathbb{Z}^n -actions in [2].

An ergodic \mathbb{Z}^n -process $(\mathcal{F}, P \vee H)$ is called *H-relatively finitely determined* (written *H*-rel. F.D.) if for every $\varepsilon > 0$ there exists $\delta > 0$ and *M* such that for all ergodic processes $(\mathcal{F}', P' \vee H')$ with $(\mathcal{F}', H') \sim (\mathcal{F}, H)$, the conditions

(i)
$$|h(\mathcal{F}, P \vee H) - h(\mathcal{F}', P' \vee H')| < \delta$$
 and

(ii)
$$\left| \operatorname{dist} \left(\bigvee_{\mathbf{v} \in R(M)} T_{\mathbf{v}}(P \vee H) \right) - \operatorname{dist} \left(\bigvee_{\mathbf{v} \in R(M)} T'_{\mathbf{v}}(P' \vee H') \right) \right| < \delta$$
,

imply that $\bar{d}_{H,H'}[(\mathcal{F}, P \vee H), (\mathcal{F}', P' \vee H')] < \varepsilon$.

The notation $(\mathcal{F}', H') \sim (\mathcal{F}, H)$ means that $\bigvee_{v \in R(m)} T_v(H) = \bigvee_{v \in R(m)} T'_v(H')$ for all $m \ge 0$. The relative \bar{d} -metric, first defined by J. P. Thouvenot in [9] and also described by A. Fieldsteel in [3], is just the regular \bar{d} -metric, in which we restrict ourselves to joinings which restrict to the diagonal joining on the common factor $(\mathcal{F}', H') \sim (\mathcal{F}, H)$.

We say that \mathcal{F} is isomorphic to \mathcal{F}' relative to the common factor $(\mathcal{F}', H') \sim (\mathcal{F}, H)$ [written $\mathcal{F} \cong \mathcal{F}'$] if there is a measurable isomorphism $\phi: (X, \mathcal{F}, m) \to (X', \mathcal{F}', m')$ such that $\phi(T_{\mathbf{v}}x) = T'_{\mathbf{v}}\phi(x)$ for all $\mathbf{v} \in \mathbf{Z}^n$ and a.e. $x \in X$, and such that $\phi(H) = H'$.

ISOMORPHISM THEOREM FOR RELATIVELY-F.D. \mathbb{Z}^n -ACTIONS. For i=1,2 let $(X_i, \mathcal{F}_i, m_i)$, \mathcal{F}^i be two ergodic \mathbb{Z}^n -actions such that $\mathcal{F}_i = \bigvee_{v \in \mathbb{Z}^n} T^i_{-v}(P_i \vee H_i)$, where P_i and H_i are finite partitions of X_i , and such that $(\mathcal{F}^i, P_i \vee H_i)$ is H_i -rel. f.d. Suppose $(\mathcal{F}^1, H_1) \sim (\mathcal{F}^2, H_2)$. Then $h(m_1 : \mathcal{F}^1) = h(m_2 : \mathcal{F}^2)$ if and only if $\mathcal{F}^1 \cong \mathcal{F}^2$.

Form the product space (Z, \mathscr{F}_2) , $\mathscr{U} = (X_1 \times X_2, \mathscr{F}_1 \times \mathscr{F}_2)$, $\{T_v^1 \times T_W^2\}_{(v, w) \in \mathbb{Z}^{2n}}$, a \mathbb{Z}^{2n} -action. Following Burton and Rothstein, we let 2 denote the trivial algebra whenever necessary.

Define a space of joinings on Z by $\mathcal{M}_{H_1,H_2}(Z) = \{\mu \mid \mu \text{ is a } \mathcal{U}\text{-invariant}$ ergodic probability measure on Z such that $\mu^1 = m_1$, $\mu^2 = m_2$ and such that $V_{v \in Z''} T^1_{-v}(H_1) \times 2 = 2 \times V_{v \in Z''} T^2_{-v}(H_2) \mu\text{-a.s.}\}$. Note μ^i denotes the *i*th marginal of μ . We call $\mathcal{M}_{H_1,H_2}(Z)$ the space of ergodic joinings of $(X_1, \mathcal{F}_1, m_1), \mathcal{F}^1$ and $(X_2, \mathcal{F}_2, m_2), \mathcal{F}^2$ relative to the common factor $(\mathcal{F}^1, H_1) \sim (\mathcal{F}^2, H_2)$. For ease of notation write $\mathcal{M} = \mathcal{M}_{H_1,H_2}(Z)$.

Let $\{C_i\}$ be an enumeration of the cylinder sets of $(\mathcal{F}^1, P_1 \vee H_1)$ and let $\{D_i\}$

be an enumeration of the cylinder sets of $(\mathcal{F}^2, P_2 \vee H_2)$. Define a metric on \mathcal{M} by

$$d(\mu,\nu)=\sum_{i,j}\frac{|\mu(C_i\times D_j)-\nu(C_i\times D_j)|}{2^{i+j}}.$$

Call this the distribution metric on relative joinings.

Let \mathcal{M}_0 be the closure of \mathcal{M} with respect to this distribution metric. The space \mathcal{M} is nonempty. Specifically, if ν is the relatively independent joining of m_1 and m_2 over the factor $(\mathcal{F}^1, H_1) \sim (\mathcal{F}^2, H_2)$ then ν satisfies the requirements of \mathcal{M} , except possibly ergodicity. It is straightforward to show that since (X_1, \mathcal{F}^1) and (X_2, \mathcal{F}^2) are ergodic, ν -a.e. ergodic component ν_z of ν is itself a joining of m_1 and m_2 which lies in \mathcal{M} .

It is easy to show that, with respect to the distribution metric, \mathcal{M}_0 is a compact metric space. Furthermore, \mathcal{M} is a dense G_{δ} in \mathcal{M}_0 .

Let

$$\mathcal{M}_1 = \{ \mu \in \mathcal{M}_0 \mid h_\mu(P_1 \vee H_1 \times 2 \mid 2 \times \mathcal{F}_2) = 0 \}$$

and let

$$\mathcal{M}(Z) = \{ \mu \in \mathcal{M}_0 \mid h_{\mu}(2 \times P_2 \vee H_2 \mid \mathcal{F}_1 \times 2) = 0 \}.$$

The proof of the relative isomorphism theorem reduces to proving the following theorem.

Theorem 1. \mathcal{M}_1 is a dense G_{δ} in \mathcal{M}_0 .

To see that this completes the isomorphism theorem, suppose, for a moment, that Theorem 1 is true. A symmetric argument implies that \mathcal{M}_2 is also a dense G_δ in \mathcal{M}_0 , and hence $J = \mathcal{M} \cap \mathcal{M}_1 \cap \mathcal{M}_2$ is a dense G_δ in \mathcal{M}_0 . Thus J is the set of \mathcal{U} -invariant ergodic joinings of m_1 and m_2 , which respect the common factor (\mathcal{F}^1, H_1) , such that for every $\mu \in J$, $h_{\mu}((P_1 \vee H_1) \times 2 \mid 2 \times \mathcal{F}_2) = 0$ and $h_{\mu}(2 \times (P_2 \vee H_2) \mid \mathcal{F}_1 \times 2) = 0$. Any such joining gives rise to an isomorphism of \mathcal{F}^1 and \mathcal{F}^2 , relative to the common factor (\mathcal{F}^1, H_1) . Specifically, the existence of such a joining implies that there is a measurable, measure preserving isomorphism between the σ -algebras \mathcal{F}_1 and \mathcal{F}_2 , relative to the common factor. This isomorphism induces a pointwise isomorphism of \mathcal{F}^1 and \mathcal{F}^2 , relative to the common factor.

It remains to prove Theorem 1. We need the following two technical lemmas. The first describes a method of slightly boosting entropy. The second lemma describes a method of copying a process "into" another of strictly lower

entropy while preserving a common factor. These two lemmas are adaptations of work by Burton and Rothstein [1].

LEMMA 2. Let $(X, \mathcal{F}, P), \mathcal{F}$ be a \mathbb{Z}^n -sequence space on k symbols $\{1, 2, \ldots, k\}$. Let $(E, \mathcal{E}, B \times P), \mathcal{F}$ be the product space, $E = X \times X, \mathcal{E} = \mathcal{F} \times \mathcal{F}, \mathcal{F} = \mathcal{F} \times \mathcal{F}$. Let m be a \mathcal{F} -invariant ergodic probability measure on \mathcal{F} . Let $t \in [0, 1]$.

There exists an \mathscr{G} -invariant measure ζ on \mathscr{E} such that $\zeta^2 = m$ and $h(\zeta^1 : \mathscr{F}, P) \ge (1 - t)h(m : \mathscr{F}, P) + t(\log k)$. Furthermore, $\zeta(\bigcup_{i=1}^k P_i \times P_i) \ge 1 - t$.

Burton and Rothstein call ζ the *t-randomization of m*. They prove this result, and a bit more, about this randomization in [1]. Their proof carries over completely to the \mathbb{Z}^n -action case, and thus will not be repeated here. Instead, we simply outline the construction of the measure ζ .

Let m' be a measure so that $(X, \mathcal{F}, P, m'), \mathcal{F}$ is the Bernoulli shift with $m'(P_1) = 1 - t + t/k$ and $m'(P_i) = t/k$, i > 1. Let $\mu = m' \times m$. Define a new partition $Q = \{Q_i\}_{i=1}^k$ by $Q_i = \bigcup_{j=1}^k P_j \times P_{i+j-1 \pmod k}$. Let ζ be the unique probability measure on \mathscr{E} defined by

$$\zeta\left(\bigcap_{\mathbf{v}\in R(m)} S_{\mathbf{v}}(P_{j}\times P_{r})\right) = \mu\left(\bigcap_{\mathbf{v}\in R(m)} S_{\mathbf{v}}(Q_{j}\cap (X\times P_{r}))\right)$$
$$= \mu\left(\bigcap_{\mathbf{v}\in R(m)} S_{\mathbf{v}}(P_{r-j+1(\text{mod }k)}\times P_{r})\right)$$

for all $m \ge 0$, where j and r may vary with v. Notice that ζ is ergodic, since it is a factor of μ , which is ergodic. Furthermore, $\zeta^2 = m$ and ζ is \mathscr{S} -invariant. Several straightforward computations will verify the remainder of the theorem.

LEMMA 3. Let (X, μ) , \mathcal{F} be an ergodic \mathbb{Z}^n -dynamical system and let P, Q and H be partitions of X. Suppose $h(\mathcal{F}, P \vee H) > h(\mathcal{F}, Q \vee H)$. Given $\varepsilon > 0$ and $r \ge 0$, there is a partition \tilde{P} of X such that

$$(1) \ \tilde{P} \vee H \subset \bigvee_{\mathbf{v} \in \mathbf{Z}^n} T_{-\mathbf{v}}(Q \vee H),$$

(2)
$$\left| \operatorname{dist} \left(\bigvee_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(P \vee Q \vee H) \right) - \operatorname{dist} \left(\bigvee_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(\tilde{P} \vee Q \vee H) \right) \right| < \varepsilon \text{ and}$$

(3)
$$h\left(Q \vee H \middle| \bigvee_{\mathbf{v} \in \mathbb{Z}^n} T_{\mathbf{v}}(\tilde{P} \vee H)\right) < \varepsilon.$$

PROOF. Choose $\sigma > 0$ so that $h(\mathcal{F}, P \vee H) - h(\mathcal{F}, Q \vee H) > 3\sigma$. Let $A_m \subset X$ be the set of points x such that

(i)
$$\left| \frac{1}{|R(m)|} \sum_{\mathbf{v} \in R(m)} \mathbf{1}_B(T_{\mathbf{v}}x) - \mu(B) \right| < \sigma \text{ for all atoms } B \in \bigvee_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(P \vee H),$$

(ii) there is a collection \mathscr{E}_Q of sets in $\bigvee_{\mathbf{v}\in R(m)} T_{\mathbf{v}}(Q\vee H)$ such that $\mu(\mathscr{E}_Q)>$

 $1-\sigma$, and

$$2^{-[h(\mathcal{F}, Q \vee H) + \sigma](2m+1)^n} < \mu(E_O) < 2^{-[h(\mathcal{F}, Q \vee H) - \sigma](2m+1)^n}$$
 for all $E_O \in \mathscr{E}_O$,

and

(iii) there is a collection \mathscr{E}_P of sets in $\bigvee_{\mathbf{v}\in R(m)} T_{\mathbf{v}}(P\vee H)$ such that $\mu(\mathscr{E}_P) > 1-\sigma$, and

$$2^{-[h(\mathcal{F}, P \vee H) + \sigma](2m+1)^n} < \mu(E_P) < 2^{-[h(\mathcal{F}, P \vee H) - \sigma](2m+1)^n}$$
 for all $E_P \in \mathscr{E}_P$.

By the ergodic theorem and the Shannon-McMillan-Breiman theorem [8], choose M so large that $\mu(A_M) > 1 - (\sigma/4)$. Fix this M. Let $A = A_M$.

Let $\#\mathscr{E}_P$ denote the number of sets in \mathscr{E}_P . Then $\#\mathscr{E}_P \ge \#\mathscr{E}_Q$.

Let $\{H_k \mid k \in \mathcal{K}\}$ be the atoms of $\bigvee_{v \in R(M)} T_v(H)$. Let $\{P_i \mid i \in \mathcal{I}\}$ be the atoms of $\bigvee_{v \in R(M)} T_v(P)$. Let $\{Q_j \mid j \in \mathcal{J}\}$ be the atoms of $\bigvee_{v \in R(M)} T_v(Q)$. Note that \mathcal{I} , \mathcal{I} and \mathcal{K} are finite indexing sets.

By the Strong Rochlin Lemma [5], there is a set $\tilde{F} \subset A$ such that $\{T_v \tilde{F}\}_{v \in R(M)}$ are disjoint, $\mu(\bigcup_{v \in R(M)} T_v \tilde{F}) > 1 - (\sigma/2)$ and

$$\operatorname{dist}_{\mu}\left(\bigvee_{\mathbf{v}\in R(m)}T_{\mathbf{v}}(Q\vee H)/\tilde{F}\right)=\operatorname{dist}_{\mu}\left(\bigvee_{\mathbf{v}\in R(m)}T_{\mathbf{v}}(Q\vee H)\right).$$

Decrease the number of columns in this Rochlin tower by replacing the base \tilde{F} with the set $F = \bigcup_{E_Q \in \mathcal{E}_Q} E_Q \cap \tilde{F}$. Then we have a new Rochlin tower $D = \bigvee_{v \in R(M)} T_v F$ which satisfies $\mu(\bigvee_{v \in R(M)} T_v F) > 1 - \sigma$, and also

$$\operatorname{dist}_{\mu}\left(\bigvee_{\mathbf{v}\in R(M)}T_{\mathbf{v}}(Q\vee H)/F\right)=\operatorname{dist}_{\mu}\left(\bigvee_{\mathbf{v}\in R(M)}T_{\mathbf{v}}(Q\vee H)\right).$$

Let $\mathscr{E}_F = \{E_Q \mid E_Q \cap F \neq \emptyset\}$. For any E_P in \mathscr{E}_P and any E_Q in \mathscr{E}_Q , we have that $\mu(E_P) < 2^{-\sigma(2M+1)^n}\mu(E_Q)$. Thus, each name in \mathscr{E}_F intersects some collection of names in \mathscr{E}_P .

We want to assign to each element of \mathscr{E}_F a unique element of \mathscr{E}_P which intersects it. Choose some E_{Q_i} in \mathscr{E}_F and let $\phi(E_{Q_i}) \in \mathscr{E}_P$ be a P-name which satisfies $E_{Q_i} \cap \phi(E_{Q_i}) \neq \emptyset$. Inductively select an E_{Q_i} (not equal to E_{Q_i} for j < i),

and assign to it some $\phi(E_{Q_i})$ in \mathscr{E}_P so that $\phi(E_{Q_i}) \neq \phi(E_{Q_i})$ for all j < i and $E_{Q_i} \cap \phi(E_{Q_i}) \neq \emptyset$. Suppose such an assignment cannot be made. Then either (a) all of the elements of \mathscr{E}_F have been used, or (b) all remaining $E_Q \in \mathscr{E}_F$, $Q \neq Q_j$, satisfy $E_P \cap E_Q = \emptyset$ for all $E_P \neq \phi(E_{Q_j})$, j < i. If (b) holds then each $E_Q \in \mathscr{E}_F$, $Q \neq Q_j$, must be contained in the set $\bigcup_{j=1}^{i-1} \phi(E_{Q_j}) \cup D'$. If more than half of any E_Q were to lie in D', the tower error set, then $\mu(E_Q) < 2\sigma$, which is false. Hence the "assigned elements" of \mathscr{E}_P must cover at least half of each element $E_Q \in \mathscr{E}_F$, $Q \neq Q_J$, so that the assigned elements of \mathscr{E}_P have total mass greater than $(1 - \sigma)/2$.

Therefore,

$$\mu\left(\bigcup_{j=1}^{i-1} E_{Q_j}\right) \ge 2^{\sigma(2M+1)^n} \mu\left(\bigcup_{j=1}^{i-1} \phi(E_{Q_j})\right) \ge 2^{\sigma(2M+1)^n} (1-\sigma)/2,$$

which is clearly larger than 1 for M chosen sufficiently large. This is a contradiction, so that (2) cannot occur. Hence, there exists an injective function ϕ which maps the sets of \mathscr{E}_F into the sets of \mathscr{E}_P , so that $E_Q \cap \phi(E_Q) \neq \emptyset$.

For $E \in \mathscr{E}_F$, write

$$\phi(E) = \bigcap_{\mathbf{v} \in R(M)} T_{\mathbf{v}}(P_{i(\mathbf{v})} \cap H_{k(\mathbf{v})}), \qquad i(\mathbf{v}) \in \mathscr{I}, \quad k(\mathbf{v}) \in \mathscr{K}.$$

For this E and $v \in R(M)$, label $T_v(E \cap F)$ by (i(v), k(v)).

We now define a partition $\tilde{P} = \{\tilde{P}_i\}_{i \in \mathcal{I}}$. Attach a color of R = red to points in the tower and W = white to points not in the tower. This R - W process is a small entropy process, depending on σ , which tracks points in the tower. Let $\tilde{P}_i \cap W = \bigcup_{E \in \mathcal{E}_F} \{T_v(E \cap F) \mid i(v) = i\}$, a partition on the tower D. For $x \notin D$, let $x \in \tilde{P}_1 \cap R$. This defines a partition $\tilde{P} \vee H$ on X which is clearly measurable with respect to $\bigvee_{v \in R(M)} T_v(Q \vee H)$, so that (1) of the lemma is satisfied.

Because of the Red and White markers, the tower D is measurable with respect to $\bigvee_{v \in \mathbb{Z}^n} T_v(\tilde{P} \vee H)$. Since the map ϕ is injective, the $Q \vee H$ -names partitioning D are also measurable with respect to $\bigvee_{v \in \mathbb{Z}^n} T_v(\tilde{P} \vee H)$. Furthermore, the partition $\{D^c, Q_j \cap H_k \cap D\}_{j,k}$ is measurable with respect to the $Q \vee H$ -partition of the tower, so that $\{D^c, Q_j \cap H_k \cap D\}_{j,k}$ is measurable with respect to $\bigvee_{v \in \mathbb{Z}^n} T_v(\tilde{P} \vee H)$. Given $\varepsilon > 0$ choose σ so small that

$$h(Q \vee H \mid \{D^c, Q_i \cap H_k \cap D\}_{i,k}) < \varepsilon.$$

This implies

$$h(Q \vee H \mid \bigvee_{v \in \mathbb{Z}^n} T_v(\tilde{P} \vee H)) < \varepsilon,$$

which proves (3) of the lemma.

Finally, we prove the distribution relation (2).

Let

$$C = \bigcap_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(P_{i(\mathbf{v})} \cap Q_{j(\mathbf{v})} \cap H_{k(\mathbf{v})}) \in \bigvee_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(P \vee Q \vee H)$$

and let

$$C' = \bigcap_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(\hat{P}_{i(\mathbf{v})} \cap Q_{j(\mathbf{v})} \cap H_{k(\mathbf{v})}) \in \bigvee_{\mathbf{v} \in R(r)} T_{\mathbf{v}}(\tilde{P} \vee Q \vee H)$$

for any choice for $i(\mathbf{v})$, $j(\mathbf{v})$, $k(\mathbf{v})$ and $\mathbf{v} \in R(r)$. Let $\varepsilon' = \varepsilon(|Q||P||H|)^{-(r+1)}$. We show that $|\mu(C) - \mu(C')| < \varepsilon'$.

Compute the following:

$$\mu(D \cap C) = \sum_{\mathbf{v} \in R(M)} \mu(T_{\mathbf{v}} F \cap C) = \int_{F} \sum_{\mathbf{v} \in R(M)} \mu(\{x \mid x \in T_{-\mathbf{v}}C\}) d\mu$$

$$= \int_{F} \sum_{\mathbf{v} \in R(M)} \mu(\{x \mid x \in T_{-\mathbf{v}}C'\}) d\mu = [\mu(C') \pm \sigma](2m+1)^{n} \mu(F)$$

$$= (1 - \sigma/2)[\mu(C') \pm \sigma].$$

Furthermore, $0 \le \mu(C) - \mu(D \cap C) = \mu(D^c \cap C) \le \mu(D^c) < \sigma$. Hence $|\mu(C') - \mu(C)| < 3\sigma$. Choose σ so that $3\sigma < \varepsilon'$, to complete the proof of Lemma 3.

We are ready to prove Theorem 1, which will complete the proof of the Relative Isomorphism Theorem.

PROOF OF THEOREM 1. Show that \mathcal{M}_1 is a dense G_{δ} in \mathcal{M}_0 . Write $\mathcal{M}_1 = \bigcap_m \mathcal{O}_m$ where each set \mathcal{O}_m is defined by

$$\mathcal{O}_m = \{ \mu \in \mathcal{M}_0 \mid h_\mu(P_1 \vee H_1 \times 2 \mid 2 \times \mathcal{F}_2) < 1/m \}.$$

The upper semi-continuity of the entropy function, with respect to the distribution metric, implies that \mathcal{O}_m is an open set in \mathcal{M}_0 . The difficulty arises in showing that \mathcal{O}_m is dense in \mathcal{M}_0 . Once this is proven, the Baire Category Theorem implies that \mathcal{M}_1 is a dense G_δ in \mathcal{M}_0 , which completes the theorem.

Let $\mu \in \mathcal{M}_0$. We must find a relative joining in \mathcal{O}_m which is arbitrarily close to μ in the distribution metric.

Let $\delta > 0$. By definition of \mathcal{M}_0 , we have an ergodic ν in \mathcal{M}_0 such that $d(\mu, \nu) < \delta$. We now work with this ergodic ν .

We know that $h(v^1: P_1 \vee H_1) = h(v^2: P_2 \vee H_2)$, and would like to apply Lemma 3, to "copy" the process $(v^1, P_1 \vee H_1)$ into $(v^2, P_2 \vee H_2)$. In order to do this, we must boost the entropy of $(v^1, P_1 \vee H_1)$. We use Lemma 2.

Let ζ be a δ -randomization of $(v^1, P_1) = (m_1, P_1)$, so that the Bernoulli shift used in constructing ζ is independent of the process $(v^1, H_1) = (m_1, H_1)$. Consider the process $(\zeta^1, P_1 \vee H_1) = (\zeta^1, P_1) \vee (m_1, H_1)$. Since $(\bigcup_{i=1}^{|P_i|} P_{1_i} \times P_{1_i}) \ge 1 - \delta$, given $\delta_1 > 0$, we may choose δ so small that $d(\zeta^1, v^1) < \delta_1$. Furthermore, if $|P_1| = k$ then

$$h(\zeta^1: \mathcal{F}^1, P_1 \vee H_1) \ge (1 - \delta)h(m_1: \mathcal{F}^1, P_1 \vee H_1) + \delta[(\log k) + h(m_1: H_1)].$$

Thus

$$h(\zeta^1: \mathcal{F}^1, P_1 \vee H_1) \ge (1 - \delta)h(m_1: \mathcal{F}^1, P_1 \vee H_1) + \delta[(\log k) + h(m_1: H_1)].$$

Without loss of generality, we assume that $h(m_1: \mathcal{F}^1, P_1 \vee H_1) < (\log k) + h(m_1: H_1)$. This simply means that the process $(m_1: \mathcal{F}^1, P_1)$ is not the full \mathbb{Z}^n -shift on k symbols. To treat this case, we would embed this shift into a shift on k+1 symbols, in which case the above assumption holds.

Now $h(m_1: \mathcal{F}^1, P_1 \vee H_1) < (\log k) + h(m: H_1)$, so that the strict inequality

$$h(\zeta^1: \mathcal{F}^1, P_1 \vee H_1) > h(m_1: \mathcal{F}^1, P_1 \vee H_1) = h(m_2: \mathcal{F}^2, P_2 \vee H_2)$$

holds.

Let λ be an ergodic joining of ζ^1 and m_2 over the common factor $(m_1, H_1) \sim (m_2, H_2)$, such that $\lambda^1 = \zeta^1$ and $\lambda^2 = m_2$. Furthermore, choose λ so that $d(\lambda, \nu) < \delta_1$.

Given δ , choose M so large that if α and β are probabilities on Z with

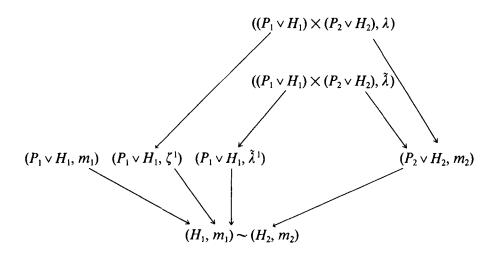
$$\left| \operatorname{dist}_{\alpha} \left(\bigvee_{\mathbf{v} \in R(M)} U_{\mathbf{v}}(P_1 \vee H_1) \times (P_2 \vee H_2) \right) - \operatorname{dist}_{\beta} \left(\bigvee_{\mathbf{v} \in R(M)} U_{\mathbf{v}}(P_1 \vee H_1) \times (P_2 \vee H_2) \right) \right| < \delta,$$

then $d(\alpha, \beta) < 2\delta$.

Apply Lemma 3 to the ergodic system (Z, λ) , \mathcal{U} and finite partitions $P_1 \times X_2$, $X_1 \times P_2$ and $H_1 \times X_2 = X_1 \times H_2$. Note that $h_{\lambda}(\mathcal{U}, (P_1 \vee H_1) \times X_2) > h_{\lambda}(\mathcal{U}, X_1 \times (P_2 \vee H_2))$. Therefore, by Lemma 2, given δ and M, there is a partition $\tilde{P}_1 \vee H_1 \subset \bigvee_{v \in \mathbb{Z}^{2n}} U_v(X_1 \times (P_2 \vee H_2))$ such that

$$\left| \operatorname{dist}_{\lambda} \left(\bigvee_{\mathbf{v} \in R(M)} U_{\mathbf{v}}(P_1 \vee H_1) \times (P_2 \vee H_2) \right) - \operatorname{dist}_{\lambda} \left(\bigvee_{\mathbf{v} \in R(M)} U_{\mathbf{v}}(\tilde{P}_1 \vee H_1) \times (P_2 \vee H_2) \right) \right| < \delta,$$

Transfer λ on $(\tilde{P} \vee H_1) \times (P_2 \vee H_2)$ -names to $\tilde{\lambda}$ on $(P_1 \vee H_1) \times (P_2 \vee H_2)$ -names so that $\tilde{\lambda}$ is a joining of $((P_1 \vee H_1) \times X_2, \zeta^1)$ and $(X_1 \times (P_2 \vee H_2), m_2)$, relative to the common factor $(H_1, m_1) \sim (H_2, m_2)$, $d(\lambda, \tilde{\lambda}) < 2\delta$. We have the following diagram:



We will construct an appropriate joining η of $(P_1 \vee H_1, m_1)$ with $(P_1 \vee H_1, \tilde{\lambda}^1)$ by using the fact that $(P_1 \vee H_1, m_1)$ is H_1 -rel. f.d. We will let π be the relatively independent joining of η and $\tilde{\lambda}$ over the common factor $(H_1, m_1) \sim (H_2, m_2)$. We will see that for π -a.e. ergodic component π_z , $\pi_z^{1,4}$ will be the desired relative joining of m_1 and m_2 which lies in \mathcal{O}_m .

We now construct η . Since $d(\lambda, \tilde{\lambda}) < 2\delta$,

$$|\operatorname{dist}(\lambda^1: P_1 \vee H_1) - \operatorname{dist}(\tilde{\lambda}^1: P_1 \vee H_1)| < 2\delta.$$

The entropy function is upper semi-continuous with respect to the distribution metric. Thus, given δ_2 , we may choose δ so small that $h(\tilde{\lambda}^1: P_1 \vee H_1) - h(\lambda^1: P_1 \vee H_1) < \delta_2$. Furthermore,

$$h(\tilde{\lambda}^{1}: P_{1} \vee H_{1}) - h(\lambda^{1}: P_{1} \vee H_{1}) = h(\lambda^{2}: \tilde{P}_{1} \vee H_{1}) - h(\lambda^{1}: P_{1} \vee H_{1})$$

$$= h(\lambda^{2}: \tilde{P}_{1} \vee H_{1}) - h(\lambda^{2}: P_{2} \vee H_{2}) + h(\lambda^{2}: P_{2} \vee H_{2}) - h(\lambda^{1}: P_{1} \vee H_{1})$$

$$\geq -h\left(P_{2} \vee H_{2} \middle| \bigvee_{v \in \mathbb{Z}^{n}} T_{v}^{1}(\tilde{P}_{1} \vee H_{1})\right) + h(m_{1}: P_{1} \vee H_{1}) - h(\zeta^{1}: P_{1} \vee H_{1})$$

$$> -\delta_{2} - \delta_{3}(\delta_{1}) \quad \text{by Lemma 3},$$

where $\delta_3(\delta_1)$ is some small number depending on δ_1 , by upper semi-continuity. Therefore $|\operatorname{dist}(m_1: P_1 \vee H_1) - \operatorname{dist}(\tilde{\lambda}^1: P_1 \vee H_1)| < \delta_1 + 2\delta$ and

$$|h(m_1: \mathcal{F}^1, P_1 \vee H_1) - h(\tilde{\lambda}^1: \mathcal{F}^1, P_1 \vee H_1)|$$

 $< \delta_2 + \delta_3(\delta_1) + |h(m_1) - h(\tilde{\lambda}^1)| < \delta_2 + 2\delta_3(\delta_1)$

by upper semi-continuity.

Thus, since $(m_1, P_1 \vee H_1)$ is H_1 -rel. f.d., given any δ_4 we may choose δ , δ_1 , δ_2 and δ_3 so small that $\bar{d}_{H_1, H_2}[(m_1, P_1 \vee H_1), (\tilde{\lambda}^1, P_1 \vee H_1)] < \delta_4$. By the definition of relative \bar{d} -distance, this gives us a $\mathcal{F}^1 \times \mathcal{F}^1$ -invariant ergodic probability measure η on $\mathcal{F}_1 \times \mathcal{F}_1$, a joining of $(m_1, P_1 \vee H_1)$ and $(\tilde{\lambda}^1, P_1 \vee H_1)$, relative to the factor $(m_1, H_1) \sim (m_2, H_2)$, such that $\eta^1 = m_1$, $\eta^2 = \tilde{\lambda}^1$ and $\eta(\bigcup_{i=1}^k P_{1_i} \times P_{1_i}) > 1 - \delta_4$.

Let π be the relatively independent joining of η and $\tilde{\lambda}$ over the common factor $(P_1 \vee H_1, \tilde{\lambda})$. If π is not ergodic, let π_z be an ergodic component of π which is still a joining of η and $\tilde{\lambda}$ over $(P_1 \vee H_1, \tilde{\lambda}^1)$. Let $\rho = \pi_z^{1,4}$ be the projection of π onto its first and fourth marginals. Notice that ρ is ergodic, since it is the marginal of an ergodic measure. Furthermore, $(H_1, m_1) \sim (H_2, m_2)$ is still a factor of ρ . We verify that ρ is close to μ in the distribution metric and that ρ is in \mathcal{O}_m .

Let $\varepsilon > 0$. Using the triangle inequality, $d(\mu, \rho) < \delta + \delta_1 + 2\delta + 2\delta_4$. Choose δ , δ_1 and δ_4 so small that $3\delta + \delta_1 + 2\delta_4 < \varepsilon$ to see that $d(\mu, \rho) < \varepsilon$.

By construction, $h_{\tilde{\lambda}}((P_1 \vee H_1) \times X_2 \mid X_1 \times \mathscr{F}_2) = 0$. Since the entropy function is upper semi-continuous, there exists some $\tilde{\delta} = \tilde{\delta}(\tilde{\lambda})$ such that if $d(\tilde{\lambda}, \rho) < \tilde{\delta}$ then $h_{\rho}((P_1 \vee H_1) \times X_2 \mid X_1 \times \mathscr{F}_2) - h_{\tilde{\lambda}}((P_1 \vee H_1) \times X_2 \mid X_1 \times \mathscr{F}_2) < 1/m$. In particular, $h_{\rho}((P_1 \vee H_1) \times X_2 \mid X_1 \times \mathscr{F}_2) < 1/m$. Thus, if we further require that $\delta_4 < \tilde{\delta}/2$ then $d(\tilde{\lambda}, \rho) < \tilde{\delta}$ so that $h_{\rho}((P_1 \vee H_1) \times X_2 \mid X_1 \times \mathscr{F}_2) < 1/m$, which implies $\rho \in \mathcal{O}_m$.

Therefore, any two ergodic \mathbb{Z}^n -actions which are finitely determined relative to a common factor are isomorphic if and only if they have the same entropy.

REFERENCES

- 1. R. Burton and A. Rothstein, Isomorphism theorems in ergodic theory, unpublished notes.
- 2. J. P. Conze, Entropie d'un groupe abélian de transformations, Z. Wahrscheinlichkeitstheor. Verw. Gebiete 25 (1972), 11-30.
- 3. A. Fieldsteel, *The relative isomorphism theorem for Bernoulli flows*, Isr. J. Math. **40** (1981), 197–216.
- 4. J. Kammeyer, A complete classification of the two-point extensions of a multidimensional Bernoulli shift, Doctoral Dissertation, 1988.
- 5. Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Isr. J. Math. 12 (1972), 161-173.
- 6. J. Kieffer, A simple development of the Thouvenot relative isomorphism theory, Ann. Probab. 12 (1984), 204-211.
- 7. D. Ornstein, Ergodic Theory, Randomness and Dynamical Systems, Yale University Press, New Haven, 1974.
- 8. D. Ornstein and B. Weiss, The Shannon-McMillan-Breiman theorem for a class of amenable groups, Isr. J. Math. 44 (1983), 53-60.
- 9. J. P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se decomposent en un produit de deux systèmes dont l'un est un schèma de Bernoulli, Isr. J. Math. 21 (1975), 177-207.